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Abstract

The so-called viscoplastic consistency model, proposed by Wang, Sluys and de Borst, is extended here to the inte-
gration of a thermoviscoplastic constitutive equation for J2 plasticity and adiabatic conditions. The consistency condi-
tion in this case includes not only strain rate but also the effect of temperature on the yield function. Using the
backward Euler integration scheme to integrate the constitutive equations, an implicit algorithm is proposed, leading
to generalized expressions of the classical return mapping algorithm for J2 plasticity, both for the iterative calculation of
the plastic multiplier increment and for the consistent tangent operator when strain rate and temperature are considered
also as state variables of the hardening equation. The model was implemented in a commercial finite element code and
its performance is demonstrated with the numerical simulation of four Taylor impact tests.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many advanced processes in engineering such as high-speed metal forming (Rojek et al., 2001) and
cutting (Molinari et al., 2002; Bäker et al., 2002), structures under crashes (Reyes et al., 2002), high-
speed impact on metallic armours (Yadav et al., 2001; Rosenberg et al., 2004) and others, involve com-
plex thermomechanical and multiaxial loading conditions which include large strain, high strain rates,
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Notations

cv specific heat
C linear isotropic elastic tensor
d rate of deformation tensor
F deformation gradient tensor
l velocity gradient tensor
r plastic strain rate direction
s deviatoric stress tensor
a coefficient of thermal expansion
�ep equivalent plastic strain
g Quinney–Taylor coefficient
q material density
r Cauchy stress tensor
�r equivalent stress
rY yield stress
h temperature

R. Zaera, J. Fernández-Sáez / International Journal of Solids and Structures 43 (2006) 1594–1612 1595
temperature softening, adiabatic processes, etc. The numerical simulation of these phenomena requires
the integration of the constitutive equations of the material, accounting for thermoviscoplastic harden-
ing relations such as those proposed by Johnson and Cook (1983), Bodner et al. (1975), Zerilli et al.
(1987), Litonski (1977) or the more recent equation by Rusinek and Klepaczko (2001). Two major kinds
of model can be formulated to account for viscoplastic behaviour of materials: the overstress models

(such as Perzyna (1966) and Duvaut and Lions (1972)) and the so-called consistency model, first pro-
posed by Wang (1997) and Wang et al. (1997) and used by others (Ristinmaa et al., 2000; Winnicki
et al., 2001; Heeres, 2001). Using the overstress models, the consistency condition is not fulfilled and
stress states outside the yield surface are allowed so the Kuhn–Tucker conditions are not applicable.
On the other hand, in the second approach the consistency condition for the yield function is enforced
to include rate effects i.e.
f ðr;~j; _~jÞ ¼ 0 at _k > 0 ð1Þ
~j being a vector including all the state variables and k the plastic multiplier.
To integrate the set of non-linear thermoviscoplastic constitutive equations into the finite element meth-

od, two main tasks must be accomplished at level of the material point. The first one concerns the update of
stress and state variables, driven by the strain increment. The second is related to the proper construction of
the tangent stiffness used in global implicit FE algorithms, since the quadratic rate of convergence can be
preserved only if a consistent (algorithmic) material stiffness is adopted (Simo et al., 1985; Ju, 1990).

In this paper, the consistency model is extended to integrate the thermoviscoplastic constitutive equa-
tions for adiabatic conditions and finite deformations. Using the backward Euler scheme, this consistency
model provides a fully implicit numerical algorithm similar to the closest point projection commonly used
for rate-independent problems on account of their robustness and stability. The update of stress and state
variables is achieved through the solution of a single scalar non-linear equation in the plastic multiplier
increment Dk. Then the consistent tangent operator is determined by a systematic linearization of the cor-
responding algorithm.

The proposed scheme was implemented in the finite element commercial code ABAQUS/Explicit (2003)
and its performance is demonstrated through the numerical simulation of four Taylor impact tests.
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2. Models for rate-dependent plasticity at small strain

In classical viscoplasticity models, additive decomposition of the strain rate tensor into elastic and plastic
parts is assumed
_� ¼ _�e þ _�p ð2Þ

where no thermal deformations are considered. If an associated flow rule is adopted, the plastic strain rate
tensor is given by
_�p ¼ _k
of
or

ð3Þ
k being the plastic multiplier defining the magnitude of the plastic flow and f the yield function which de-
pends on stress and state variables. The gradient of f with respect to the stress defines the direction of the
plastic flow. Next, two different approaches to define the viscoplastic behaviour of metallic materials are
outlined.

2.1. Perzyna overstress model

A widely used viscoplastic formulation is the Perzyna model (Perzyna, 1966) whose main feature is that
the yield function can be larger than zero. This effect, known as overstress, is a consequence of the explicit
definition of the plastic multiplier
_k ¼ 1

j
hUðfPÞi ð4Þ
where h�i are the MacCauley brackets, such that
h�i ¼ � þ j � j
2

ð5Þ
fP is a rate-independent yield function, usually dependent on the equivalent plastic strain
fP ¼ �r� rYð�epÞ ð6Þ
j is a viscosity parameter and U is the overstress function, commonly given by a potential law
UðfPÞ ¼
fP

rYð�epÞ

� �m

ð7Þ
m being a constant. The viscosity parameter j and the constants in U are material-dependent so, they
should be obtained from experimental results. From the explicit definition of the plastic multiplier given
by Eq. (4) it is clear that plastic flow can take place only if U(fP) is greater than zero, that is fP > 0, and
stress may be above the yield surface leading to the overstress.
2.2. Wang consistency model

Rate-dependent plasticity can also be formulated by including the rate of the state variables in the yield
function, leading to the consistency model first proposed by Wang (1997) and Wang et al. (1997). Following
the notation proposed by Heeres et al. (2002), the rate-dependent yield surface is given by
fRD ¼ fRDðr;~j; _~jÞ ð8Þ
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Assuming that the only state variable is the equivalent plastic strain~j ¼ �ep, and J2 plasticity �ep ¼ k, der-
ivation of the yield function leads to
_f RD ¼
ofRD

or
: _rþ ofRD

ok
_kþ ofRD

o _k
€k ð9Þ
In this model, the plastic multiplier and the stress are assumed to obey certain unilateral constraints: the
Kuhn–Tucker loading/unloading complementary conditions, classical in the convex mathematical pro-
gramming literature, are given by
k P 0; f RD 6 0; kfRD ¼ 0 ð10Þ

These conditions indicate that the stress must be admissible and that plastic flow can take place only on

the yield surface given by Eq. (7). Additionally, the so-called consistency (or persistency) condition is
proposed
k _f RD ¼ 0 ð11Þ

which corresponds to the requirement that the stress must persist on the yield surface for an increase of k
(Simo and Hughes, 1998). It is obvious that neither Kuhn–Tucker nor consistency conditions are applicable
in the Perzyna model. On the contrary, in the Wang consistency model plastic flow arises when fRD = 0
(with no overstress), and the unloading process is always elastic (fRD < 0).

2.3. Comparison of the Perzyna overstress models and the Wang consistency model

Recently a systematic comparison of the above models by Heeres et al. (2002) has lead to the following
conclusions:

• The plastic multiplier evolution is defined explicitly in the Perzyna model (Eq. (4)), while in the Wang
consistency model it is defined by the second-order differential equation
_f RD ¼ 0 ð12Þ

_f RD being defined by Eq. (9).

• During plastic loading, both models lead to identical results if the following conditions are fulfilled
ofP
or
¼ ofRD

or
ð13Þ

� ofRD

o _k
¼ g

dU
dfP

� ��1
ð14Þ
• During unloading, the Perzyna model leads to plastic deformation so long as overstress is present,
whereas the consistency model always unloads elastically. Consequently the evolution of the state vari-
ables is different during stress reversals.

• The Wang consistency model yields a somewhat higher convergence rate than that derived by the
Perzyna model.

2.4. Consistency and thermoviscoplasticity

Plastic instabilities arising in high strain rate deformation are commonly triggered by an adiabatic
increase of temperature, which strongly reduces the rate of strain-hardening of most metals and alloys
(Rusinek and Klepaczko, 2001). Thus, for a proper simulation of manufacturing processes such as
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high-speed metal forming and cutting, or the service life impulsive loading of structural elements (crash,
ballistic impact), the effect of temperature should be considered as a key point of the description of the
material behaviour. The main aims of this work were to include thermal effects in the Consistency visco-
plasticity model and to develop robust algorithms to integrate it, keeping in mind that in these applications
the spatial configuration of the solid diverges notably from the material one and a large deformation frame
has to be considered.
3. Consistency thermoviscoplastic constitutive equations at finite deformations

3.1. Basic kinematics of finite deformations

Let B0 � R3 be the initial, reference or undeformed configuration of a body (considered coincident); the
motion of the body is described by a function u:B0 ! Bt � R3 which maps a material point X into the spa-
tial point x = u(X, t). The deformation gradient F is defined by
F ¼ r0x ¼
ox
oX

ð15Þ
This tensor transforms a material vector dX into the corresponding spatial vector dx
dx ¼ F dX ð16Þ
According to the polar decomposition theorem, F may be decomposed as
F ¼ RU ¼ VR ð17Þ
R being the polar orthogonal rotation tensor, U the material or right stretch tensor and V the spatial or left
stretch tensor. The velocity of a particle v is defined as the time derivative of u
vðX ; tÞ ¼ ouðX ; tÞ
ot

ð18Þ
This spatial vector is defined more consistently as a function of the spatial position
vðx; tÞ ¼ vðu�1ðx; tÞ; tÞ ð19Þ

Spatial derivative of this expression leads to the velocity gradient tensor l
l ¼ rxv ¼
ovðx; tÞ
ox

ð20Þ
which is given by
l ¼ _F F �1 ð21Þ

The velocity gradient tensor can be decomposed into symmetric and skew-symmetric parts by
d ¼ 1

2
ðlþ lTÞ ð22Þ

w ¼ 1

2
ðl� lTÞ ð23Þ
where d is the rate of deformation tensor and w the spin tensor.
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3.2. Additive decomposition of the rate of deformation tensor

For structural materials used in crashworthiness, machining or ballistic applications, elastic and thermal
strains (and rates) are commonly very small compared to unity or to plastic strains (and rates). Taking
advantage of this behaviour, the description of the deformation may be simplified. Starting from the mul-
tiplicative decomposition
F ¼ F eF hF p ð24Þ

we may write the spatial velocity gradient as
l ¼ _F F �1 ¼ le þ F elhF e�1 þ F e _F
h
lpF h�1F e�1 ð25Þ
le, lh and lp being the elastic, thermal and plastic spatial velocity gradients defined as
le ¼ _F
e
F e�1 ; lh ¼ _F

h
F h�1 ; lp ¼ _F

p
F p�1 ð26Þ
From the left polar decomposition of the deformation gradient (uncoupling rigid body from elastic, ther-
mal and plastic deformation)
F ¼ V eV hV pR ð27Þ

where the different V are the left stretch tensors. Using the nominal strain tensor � as a measure for small
elastic and thermal deformations, we have
F e ¼ V e ¼ 1þ �e � 1 ð28Þ
F h ¼ V h ¼ 1þ �h � 1 ð29Þ
and Eq. (25) leads to the additive decomposition of the velocity gradient
l ¼ _F F �1 � le þ lh þ lp ð30Þ

Taking the symmetric part of Eq. (30) we obtain the additive decomposition of the rate of deformation

tensor d generally assumed for hypoelastic–plastic materials (Nemat-Nasser, 1982; Khan and Huang,
1995).
d � de þ dh þ dp ð31Þ
3.3. Constitutive equations

The elastic stress–strain relation is given by
rr ¼ C : de ¼ C : ðd � dh � dpÞ ð32Þ
r$ being an objective stress rate and C the linear isotropic elastic tensor defined by the fourth order tenso-
rial equation
C ¼ 2GIdev þ K1� 1 ð33Þ

with G and K elastic constants
G ¼ E
2ð1þ mÞ ð34Þ

K ¼ E
3ð1� 2mÞ ð35Þ
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I is the unit fourth order tensor exhibiting only minor symmetry
ðIÞijkl ¼ dikdjl ð36Þ
and Idev the deviatoric projector
Idev ¼ I � 1

3
1� 1 ð37Þ
1 being the unit second order tensor
ð1Þij ¼ dij ð38Þ
Assuming Mises plasticity with isotropic hardening, the yield function f is written as
f ¼ �r� rYð�ep; _�e
p
; hÞ ð39Þ
where h is the temperature, �r is the equivalent stress, that could be expressed in terms of the deviatoric stress
s as
�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
s : s

r
ð40Þ
_�e
p
is the equivalent plastic strain rate given by
_�e
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
dp : dp

r
ð41Þ
and �ep the accumulated or equivalent plastic strain, defined by
�ep ¼
Z t

0

_�e
pðsÞds ð42Þ
The yield function defines the yield surface f = 0 and the elastic domain f 6 0. Choosing an associative
plastic flow rule, the plastic strain rate is given by
dp ¼ _kfr ¼ _kr ð43Þ

where k is the plastic multiplier and r the direction of the plastic flow given by the deviatoric tensor
r ¼ 3

2

s
�r

ð44Þ
From Eqs. (40), (41) and (44) it could be stated that in J2 plasticity
_�e
p ¼ _k ð45Þ
and hence the equivalence of the plastic multiplier and the equivalent plastic strain
�ep ¼ k ð46Þ
The thermal strain rate for isotropic materials is written
dh ¼ a _h1 ð47Þ

where a is the coefficient of thermal expansion. If adiabatic behaviour is assumed (no heat flux takes place)
and only plastic work is considered as the volumetric heat source, heating is determined by equation
_h ¼ g
r : dp

qcv
ð48Þ
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q being the density, cv the specific heat and g the Quinney–Taylor coefficient. The solution of Eqs. (32), (43),
(45), (47) and (48) must be subjected to the Kuhn–Tucker complementary conditions
k P 0; f 6 0; kf ¼ 0 ð49Þ

and the consistency condition
k _f ¼ 0 ð50Þ
4. Integration scheme and solving algorithm

To integrate the above rate equations, incremental objectivity is achieved by rewriting them in a neutral-
ized configuration (Simo and Hughes, 1998; Doghri, 2000; Hagege, 2004). To formalize this approach,
being - a spatial skew-symmetric tensor, we may generate a group of rotations R such that
_R ¼ -R; Rðt¼0Þ ¼ 1 ð51Þ
with
- ¼ �-T ð52Þ

and
R�1 ¼ RT ð53Þ

Typical choices of - include the spin tensor w and the tensor X defined as
X ¼ _RRT ð54Þ

where R is the polar rotation tensor. The Cauchy stress tensor and the rate of deformation tensor are ro-
tated as
rR ¼ RTrR; dR ¼ RTdR ð55Þ

Observe that time differentiation of the rotated Cauchy stress leads to
_rR ¼ RTð _rþ r-� -rÞR ¼ RTrrR ð56Þ

r$coincides with the Green–Naghdi–McInnis stress rate if - = X (and then R ¼ R) or with the Jaumann
stress rate if - = w (see Simo and Hughes (1998) for a description of the algorithm to integrate Eq. (51)
in this case). Thus, a complicated objective stress rate can be computed as a simple time derivative.
Moreover, taking advantage of the orthogonality of R, the symmetry of the Cauchy stress and rate of
deformation tensors and the isotropy of the elastic tensor ðCR ¼ CÞ, the rate equations defined above
are form-identical in the rotated configuration
_rR ¼ C : de
R ¼ C : ðdR � dh

R � dp
RÞ ð57Þ

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
sR : sR

r
; _�e

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
dp
R : dp

R

r
; _h ¼ g

rR : dp
R

qcv
ð58Þ

f � �r� rYð�ep; _�e
p
; hÞ ¼ 0 ð59Þ

dp
R ¼ _krR ¼ _k

3

2

sR
�r

ð60Þ

dh
R ¼ a _h1 ð61Þ
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4.1. The solving algorithm

Within the neutralized configuration, the classical return mapping algorithm is proposed to solve the
preceding equations (Simo and Hughes, 1998; Doghri, 2000). Return is performed at time n + 1 with the
corresponding updated rotated stress
rRnþ1 ¼ rtrial
Rnþ1
þ Drh

R þ Drret
R ð62Þ
where rotated trial stress is given by
rtrial
Rnþ1
¼ rRn þ C : ðDeRÞ ð63Þ
rRn being the rotated stress at time n
rRn ¼ RT
nrnRn ð64Þ
and DeR the increment of total deformation in the neutralized frame, which could be obtained by an objec-
tive approximation of the rate of deformation tensor dn+1/2 calculated by the midpoint rule (see Simo and
Hughes, 1998; Doghri, 2000)
DeR ¼ DtdRnþ1=2 ¼ DtRT
nþ1=2dnþ1=2Rnþ1=2 ð65Þ
A fully implicit Backward–Euler scheme is used to obtain corrections to the trial stress
Drret
R ¼ �C :

3

2
Dk

sRnþ1

�rnþ1

� �
¼ �3GDk sRnþ1

�rnþ1
ð66Þ

Drh
R ¼ �C : ðaDh1Þ ¼ �3KaDh1 ð67Þ
The updated deviatoric stress is given by
sRnþ1 ¼ Idev : ðrtrial
Rnþ1
þ Drh

R þ Drret
R Þ ¼ strialRnþ1

� 3GDk
sRnþ1

�rnþ1
ð68Þ
This last equation clearly shows the proportionality between sRnþ1 and strialRnþ1
, which could equally be sta-

ted as
sRnþ1

�rnþ1
¼

strialRnþ1

�rtrial
nþ1

ð69Þ
According to the Backward–Euler method being used, an implicit rule is selected to approximate the
temperature increase, yielding the following expression
Dh ¼ 3

2

gDk
qnþ1cv�rnþ1

rRnþ1 : sRnþ1 ¼
3

2

gDk
qnþ1cv�rnþ1

ðrtrial
Rnþ1
þ Drret

R þ Drh
RÞ :

sRnþ1 ¼
g

qnþ1cv
ð�rtrial

nþ1Dk� 3GDk2Þ ¼ g
qnþ1cv

�rnþ1Dk ð70Þ
Updated density is given by
qnþ1 ¼
q0

detðF Þ ð71Þ
From Eqs. (27)–(29), det(F) is approximated by
detðF Þ ¼ detðF eÞ detðF hÞ � detð1þ �eÞ detð1þ �hÞ � 1þ trð�eÞ þ trð�hÞ ¼ 1þ trð�Þ ð72Þ
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and qn+1 could be written in terms of the trace of a total strain measurement, i.e. the cumulative corrota-
tional strain
qnþ1 �
q0

ð1þ 1 : eRnþ1Þ
ð73Þ
Thus the terms in Eq. (62) are known once the increment of the plastic multiplier Dk is obtained by
imposing the consistency condition. According to the consistency model, in a plastic increment the yield
condition for the equivalent stress, effective plastic strain, effective plastic strain rate and temperature
has to be satisfied at time tn+1, thus avoiding overstress. As stated previously, in J2 plasticity _e

p ¼ _k, and
the consistency condition could be formulated as
fnþ1 ¼ f ð�rnþ1; knþ1; _knþ1; hnþ1Þ ¼ 0 ð74Þ

In their consistency model Winnicki et al. (2001) proposed an approximation for _k as
_k ¼ Dk
Dt

ð75Þ
On this assumption, the consistency condition is then rewritten in terms of the initial values and the plas-
tic multiplier increment leading to a non-linear algebraic equation in the variable Dk.
f �rtrial
nþ1 � 3GDk; kn þ Dk;

Dk
Dt

; hn þ
g

qnþ1cv
ð�rtrial

nþ1Dk� 3GDk2Þ
� �

¼ 0 ð76Þ
If an iterative Newton–Raphson procedure is used to find the root Dk, linearization of this equation
leads to
f ðkþ1Þ � f ðkÞ � 3GdkðkÞ � H ðkÞdkðkÞ � SðkÞ
dkðkÞ

Dt
� T ðkÞ

g
qnþ1cv

ð�rtrial
nþ1dk

ðkÞ � 6GDkðkÞdkðkÞÞ ¼ 0 ð77Þ
In the last expressions, k is the iteration index,H is the plastic modulus, S the viscoplastic modulus and T

the temperature sensitivity
H ¼ �f�ep ¼ �fk ð78Þ

S ¼ �f_�ep ¼ �f _k ð79Þ

T ¼ �fh ð80Þ

From this equation, dk(k) could be calculated as:
dkðkÞ ¼ f ðkÞ

3Gþ H ðkÞ þ SðkÞ

Dt þ T ðkÞ g
qnþ1cv

ð�rtrial
nþ1 � 6GDkðkÞÞ

ð81Þ
It is obvious that the classical radial return algorithm (Wilkins, 1964) for strain hardening Mises
plasticity is recovered if no strain rate and temperature effects are considered (S = T = 0). Note that the
viscosity parameter used (see Ponthot, 2002) to obtain dk for overstress models is here substituted by
the strain-rate sensitivity S derived directly from the hardening relation, as a result of including rate effects
in the yield function (consistency). Also thermal softening is directly coupled to the return mapping
algorithm since temperature was considered as an element of the hardening relation.

Dk is updated after every iteration
Dkðkþ1Þ ¼ DkðkÞ þ dkðkÞ ð82Þ

and the Newton–Raphson scheme is used until f (k+1) is lower than the tolerance. All the variables could
then be determined from the final value of Dk. To increase the efficiency of the algorithm, the final value
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of Dk could be stored and used as the initial value in the Newton–Raphson iteration process for the next
time increment at the same integration point, if plastic flow takes place.

We considered constant values for the Quinney–Taylor coefficient g. However, recent works have shown
that this coefficient is not a constant but a function of plastic strain and plastic strain rate (see Hodowany
et al., 2000). The algorithm developed suggests its dependence on �ep and _�e

p
in an implicit way since both

arguments are state variables. Linearization of the consistency equation should take into account this
dependence. Then, Eq. (81) becomes
dkðkÞ ¼ f ðkÞ
�
3Gþ H ðkÞ þ SðkÞ

Dt
þ T ðkÞ

qnþ1cv
ðgðkÞð�rtrial

nþ1 � 6GDkðkÞÞ þ ðKðkÞ þ CðkÞDt�1Þð�rtrial
nþ1Dk

ðkÞ

� 3GDkðkÞ
2ÞÞ

��1
ð83Þ
where
K ¼ g�ep ð84Þ

and
C ¼ g_�ep ð85Þ
Once Dk has been obtained, the updated rotated stress is pushed to the spatial configuration by Rnþ1,
leading to the following expression
rnþ1 ¼ DRnþ1
n rnDR

nþ1T
n þ C : ðDRnþ1

nþ1=2dnþ1=2DR
nþ1T
nþ1=2Þ �

3GDk
�rtrial
nþ1

Rnþ1strialRnþ1
RT

nþ1 �
3Kag
qnþ1cv

�rnþ1Dk1 ð86Þ
where the incremental rotation tensors are given by
DRnþ1
n ¼ Rnþ1R

T
n ð87Þ

DRnþ1
nþ1=2 ¼ Rnþ1R

T
nþ1=2 ð88Þ
4.2. Consistent tangent operator

When a Newton method is used to approximate to the weak form of equilibrium, a global Jacobian ma-
trix is computed by assembling local tangent operators. The asymptotic rate of quadratic convergence is
achieved by using the consistent tangent operator Talg instead of the continuum one (Simo et al., 1985).
Talg could be obtained for the proposed algorithm by the procedure described in Doghri (2000): first the
rotated consistent tangent operator T

alg
R is found from the infinitesimal scheme in the neutralized frame

and then it is rotated with Rnþ1. A similar algorithmic strategy was used by Nagtegaal (1982) and Lin
and Brocks (2004).

The rotated operator is determined by letting variables vary slightly about the converged solution. A dif-
ferentiation of elastic stress–strain relation, discretized temperature increase, discretized plastic flow rule
and yield condition gives the following equations, where the Quinney–Taylor coefficient is considered con-
stant and subscript (n + 1) is omitted for simplicity
drR ¼ C : deR � C : dehR � C : depR ð89Þ

C : dehR ¼
3Kag
cv

1 : deR
q0

�rDkþ 1

q
rR : drRDkþ

1

q
�rdk

� �
1 ð90Þ
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C : depR ¼ 2GrRdkþ 2G
orR
orR

: drRDk ð91Þ

rR : drR � Hdk� S
dk
Dt
� T

g
cv

1 : deR
q0

�rDkþ 1

q
rR : drRDkþ

1

q
�rdk

� �
¼ 0 ð92Þ
Substituting Eqs. (90) and (91) in (89) and this last in the consistency condition (92), dk is deduced
dk ¼ 1

h
rR : C : deR �

orR
orR

: drRDk

� �
� T

g
cv

1 : deR
q0

�rDkþ 1

q
rR : drRDk

� �� �
ð93Þ
in which
h ¼ 3Gþ H þ S
Dt
þ T

g
qcv

�r ð94Þ
With this value of dk, Eqs. (90) and (91) are again substituted in (89) and, accounting for the condition
rR : C :
orR
orR

¼ 0 ð95Þ
the following relation between drR and deR is derived after a straightforward calculation
MR : drR ¼ HR : deR ð96Þ

MR and HR being given by the following formulae
MR ¼ I þ 2GDk
orR
orR

� 2GT
g
qcv

Dk
h

rR � rR þ 3K
ag
qcv

Dk 1� T
g
qcv

�r
h

� �
1� rR ð97Þ

HR ¼ C � 4G2

h
rR � rR � 3K

ag
q0cv

�rDk 1� T
g
qcv

�r
h

� �
1� 1� 6KG

ag
qcv

�r
h
1� rR

þ 2GT
g

q0cv

�rDk
h

rR � 1 ð98Þ
the Hessian of J2 yield function being given by
orR
orR

¼ 1

�r
3

2
I � 1

3
1� 1

� �
� rR � rR

� �
ð99Þ
After inverting MR
M�1
R ¼

�r
3GDkþ �r

I þ 2GDk
1

3GDkþ �r
þ Tg
hqcv � 3GTDkg

� �
rR � rR þ

3KaDkgðTg�r� hqcvÞ
qcvðhqcv � 3GTDkgÞ 1� rR

þ GDk
3GDkþ �r

1� 1 ð100Þ
the rotated consistent tangent operator is given by
T
alg
R ¼M�1

R : HR ¼ T 1I þ T 2rR � rR þ T 3rR � 1þ T 41� rR þ T 51� 1 ð101Þ

with
T 1 ¼
2G�r

3GDkþ �r
ð102Þ
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T 2 ¼
4G2ð�TDkg�rþ qcvð3GDk� hDkþ �rÞÞ

ð3GDkþ �rÞð3GTDkg� hqcvÞ
ð103Þ

T 3 ¼
2GTDkgq�r

q0ð�3GTDkgþ hqcvÞ
ð104Þ

T 4 ¼ �
6GKagðTDkg�r� qcvðDkð�3Gþ hÞ þ �rÞÞ

qcvð3GTDkg� hqcvÞ
ð105Þ

T 5 ¼ K � 2G�r
3ð3GDkþ �rÞ þ

3KaDkg�rð�Tg�rþ hqcvÞ
q0cvð3GTDkg� hqcvÞ

ð106Þ
It should be noted that if Dk = 0, Talg
R becomes a continuum relation between stress and strain rate

accounting for thermal effects
_rR ¼ C � 4G2

h
rR � rR � 6KG

ag
qcv

�r
h
1� rR

� �
: _eR ð107Þ
which leads to the classical continuum tangent operator for J2 plasticity if no heating is considered.
Once T

alg
R is obtained it is then pushed forward by Rnþ1 to give Talg
ðTalgÞijkl ¼ ðRnþ1ÞiIðRnþ1ÞjJ ðRnþ1ÞkKðRnþ1ÞlLðT
alg
R ÞIJKL ð108Þ
5. Taylor impact test

The performance of the proposed algorithm is presented through a numerical example. Four Taylor im-
pact tests were simulated with the Finite Element commercial code ABAQUS/Explicit (2003) in which the
algorithm was implemented considering the Green–Naghdi–MacInnis stress rate. This test involves launch-
ing a circular cylinder at predetermined velocities against a hardened rigid target. The impacted end sus-
tains a large amount of plastic deformation whose shape has been used over the years to estimate
dynamic material properties by inverse numerical or analytical methods (Rule, 1997).

The Johnson–Cook hardening relation (Johnson and Cook, 1983) was selected for the simulation,
although the proposed scheme is valid for any hardening rule of the form rYð�ep; _�e

p
; hÞ. There are more

sophisticated hardening relations but the one due to Johnson and Cook is probably the most widely used
among those accounting for plastic strain, plastic strain rate and temperature effects. Since numerous efforts
have been made in the past to determine their properties for a large number of metallic materials, it has
been implemented in many FE explicit codes. The relation is stated through the following multiplicative
equation
rY ¼ ðAþ Bð�epÞnÞ 1þ C log
_�e
p

_�e0

� �� �
ð1�HmÞ ð109Þ
where H is the homologous temperature
H ¼ h� h0
hm � h0

ð110Þ
h0 being the reference temperature and hm the melting temperature. Concerning the plastic strain rate fac-
tor, it has to be considered that for _�e

p
< _�e0 no strain rate sensitivity need be taken into account. Actually,

the Johnson–Cook relation should be more properly defined as



Table
Proper

Proper

E (GP
m
q0 (kg/
A (MP
B (MP
n

C
_�e0 (s�1

m

h0 (K)
hm (K)
g
cv (m

2/
a (K�1
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rY ¼ ðAþ Bð�epÞnÞ 1þ C log
_�e
p

_�e0

� �� �
ð1�HmÞ ð111Þ
for _�e
p P _�e0 and
rY ¼ ðAþ Bð�epÞnÞð1�HmÞ ð112Þ

for _�e

p
< _�e0. This leads to a discontinuity in the hardening relation, as well as in their derivatives H, S and T

and the yield function f(Dk) itself, that has to be considered before starting the Newton–Raphson iteration
process to guarantee convergence. If f ð_�e0DtÞ > 0, Eq. (111) should be used and Dkð0Þ ¼ _�e0Dt is then the seed
value; otherwise, the solution starts from Eq. (112) and Dk(0) = 0 (Fig. 1).

The experimental data for this study were obtained from House (1989) Taylor test results for oxygen-free
electronic copper (see Table 1 for properties). The initial length and diameter of the cylinders were respec-
tively 56.96 mm and 7.595 mm, and specimens were launched at four different velocities: 153, 156, 180 and
189 m/s. Two measurements were considered for each deformed Taylor specimen, final length and mush-
room diameter, and they were compared with the corresponding ones obtained with finite element simula-
tions. These were performed using 0.3 mm characteristic size 8-node trilinear brick elements with reduced
integration (C3D8R in ABAQUS notation) including hourglass control. Adaptative remeshing was
Fig. 1. Root after discontinuity (a) and root before discontinuity (b).

1
ties of OFHC copper. Johnson–Cook parameters from (Meyers, 1994)

ty Value

a) 124
0.34

m3) 8960
a) 90
a) 292

0.31
0.025

) 1
1.09
298
1331
0.9

s2/K) 383
) 1.7 · 10�5
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performed at each fifth time-increment to reduce mesh distortion and computational time. No friction was
considered between projectile tip and rigid surface.

Plots of the calculated specimen dimensions versus measured Taylor specimen dimensions are shown in
Figs. 2 and 3. Simulations slightly underestimate the final lengths and overestimate the mushroom diameter
to some extent. The numerical results obtained with the Johnson–Cook model offered in the ABAQUS/
Explicit material library are similar to those obtained with the user subroutine, with differences lower than
1%. Since the Johnson–Cook model assumes that the shapes of the strain-hardening curves are
proportional to the quasi-static one through the multiplicative term ð1þ C logð_�ep=_�e0ÞÞ (Eq. (109)), the
plastic multiplier could be explicitly given by
_k ¼ _�e
p ¼ _�e0 exp

1

C
�r� rYð�ep; hÞ
rYð�ep; hÞ

� �
ð113Þ
as in the overstress formulation. Nevertheless, the influence of strain rate on the yield stress is often more
complex, and advanced hardening equations should be used, such as that proposed by Rusinek and
Klepaczko (2001), which leads to no explicit expression of strain rate in terms of equivalent stress and state
variables. In such cases the consistency model presents a good alternative to the overstress models.

The developed algorithm also allows a saving of values of strain rate at element integration points. In
plotting strain rate contours, the evolution of the plastic wave is easily followed. Fig. 4 shows a longitudinal
section of a Taylor cylinder where points with _�e

p
> 0 are plotted at different instants of the impact process.
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Fig. 2. Plot of calculated and measured projectile tip (mushroom) diameters versus velocity.
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Fig. 4. Plastic wave position (points with _�e
p
> 0) during impact. Taylor test at 153 m/s.
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It shows how the plastic wave is trapped at the projectile nose during the first stage of the process and leads
to a localization of deformation in this zone. During the first microseconds, the plastic wave is slowed due
to the reduced slope of plastic modulus H at high stress levels. As the stress level decreases, the plastic mod-
ulus increases and the inelastic wave accelerates to the rear end of the projectile. This gives rise to the con-
ical shape characteristic of the deformed Taylor specimen.
6. Conclusions

A complete thermoviscoplastic fully implicit algorithm was derived and implemented in a finite element
code. This allows a simulation of finite deformation processes in adiabatic conditions for any J2 isotropic
hardening yield function dependent on plastic strain, plastic strain rate and temperature.

Since a consistency viscoplasticity model was used, the algorithm enforces the equality of equivalent
stress and yield stress for updated values of the state variables. Following the elastic predictor and plastic
corrector scheme, it provides an expression of every updated variable in terms of the plastic multiplier incre-
ment, obtained by solving one non-linear scalar equation. The viscosity parameter, inherent in overstress
models, is replaced by a viscoplastic modulus derived directly from the hardening relation of the material.
Also, thermal softening effect is included in the return process. Moreover, a closed form of the consistent
tangent operator was found.

The algorithm is easily implemented and inherits the robustness and stability of return mapping algo-
rithms. The performance of the proposed algorithm is presented through several numerical simulations
of the Taylor impact test. Their results agree quantitatively with the experimental results.
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Appendix. Overall algorithmic details for the corotational configuration

1. Elastic predictor
rtrial
Rnþ1
¼ rRn þ C : ðDeRÞ ð114Þ
2. Check the yield condition

2.1. If f ð�rtrial
nþ1; kn; 0; hnÞ 6 0
rRnþ1 ¼ rtrial
Rnþ1

knþ1 ¼ kn

_knþ1 ¼ 0

hnþ1 ¼ hn
2.2. If f ð�rtrial
nþ1; kn; 0; hnÞ > 0

2.2.1. Initialization
�rð0Þnþ1 ¼ �rtrial
nþ1

Dkð0Þ ¼ 0

kð0Þnþ1 ¼ kn

_k
ð0Þ
nþ1 ¼ 0

hð0Þnþ1 ¼ hn
2.2.2. Check convergence at kth iteration
f ðkÞ ¼ f ð�rðkÞnþ1; k
ðkÞ
nþ1;

_k
ðkÞ
nþ1; h

ðkÞ
nþ1Þ
If f (k) < Tolerance ) Converged.
2.2.3. Compute increment dDk(k) with Eq. (81) using �rðkÞnþ1, k

ðkÞ
nþ1,

_k
ðkÞ
nþ1, h

ðkÞ
nþ1

2.2.4. Update state variables and equivalent stress
Dkðkþ1Þ ¼ DkðkÞ þ dDkðkÞ

kðkþ1Þnþ1 ¼ kð0Þnþ1 þ Dkðkþ1Þ

_k
ðkþ1Þ
nþ1 ¼

Dkðkþ1Þ

Dt
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hðkþ1Þnþ1 ¼ hð0Þnþ1 þ g
ðDkðkþ1Þ�rtrial

nþ1 � 3GDkðkþ1Þ
2Þ

qnþ1cv

�rðkþ1Þnþ1 ¼ �rð0Þnþ1 � 3GDkðkþ1Þ

ðkÞ  ðk þ 1Þ
After Convergence, stress is given by
rRnþ1 ¼ rtrial
Rnþ1
� 3GDk

strialRnþ1

�rtrial
nþ1
� 3aKDh1
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